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• It is imperative to upscale Artisanal 
Small-scale Mining (ASM) monitoring.

• Disproportionate regional focus limits 
global ASM spatial data.

• Data fusion is a promising approach for 
accurate large-scale ASM mapping.

• Local community involvement is vital 
for on-ground spatial data.

• Integrate cloud processing and partici-
pation approach for large-scale 
monitoring.
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A B S T R A C T

Artisanal and small-scale mining (ASM) significantly influences the socio-economic development of many low-to- 
middle-income countries, albeit sometimes at the expense of environmental and human health. Characterized by 
its labor-intensive extraction from confined (<5 ha) or peripheral mineral reserves, congregated ASM practices 
can rival the spatial footprint of industrial mines. The unregulated and informal nature of many ASM activities 
presents monitoring challenges that remote sensing (RS) methods aim to address. While local-scale ASM mapping 
has seen success, scaling these methods to regional or global levels remains unclear. We review literature on 
mapping ASM to determine: (1) if studies represent the global distribution and diversity of ASM activities, (2) 
how ASM's unique characteristics influence the choice of RS methods, and (3) which RS approaches are the most 
accurate and cost-effective. We found current studies disproportionately focused on ASM regions in Africa, which 
highlights the need to extend the research to other regions with unique ASM characteristics, such as coal and 
sand mining in India and China. The selection of RS approaches is heavily influenced by local ASM contexts, the 
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scale of analysis, and resource constraints such as funding for high-resolution imagery and validation data 
availability. We argue that accurate regional-scale ASM mapping (>100,000 km2) requires innovative combi-
nations of data and methods to overcome data management and storage challenges. Local community partici-
pation, including miners, is vital for on-ground mapping and monitoring capacity. We outline a research agenda 
needed to develop a range of approaches for mapping and monitoring ASM in under-studied regions. By syn-
thesizing effective methods, we provide a foundation for generating accurate and comprehensive spatial data, 
addressing the issues of inaccurate and incomplete data that global ASM platforms aim to resolve. This spatial 
data can guide policymakers, NGOs, and businesses in making informed decisions and targeted interventions to 
improve ASM sector safety, sustainability, and efficiency. Leveraging cloud-based geoprocessing platforms, with 
regularly updated global satellite image archives, combined with crowd-sourced on-ground information offers a 
potential solution for sustained regional-scale monitoring.

1. Introduction

Artisanal and small-scale mining (ASM) represents a labour-intensive 
extraction process from small (<5 ha) or marginal mineral deposits 
using rudimentary tools, predominantly occurring in lower to middle- 
income countries (Cooke et al., 2019; Zvarivadza, 2018). While ASM 
significantly contributes to socio-economic benefits such as employment 
generation, poverty alleviation, and foreign exchange, it is also associ-
ated with unregulated environmental degradation, child labor, and 
localized disruptions with potential regional impacts (Fritz et al., 2018; 
Rustad et al., 2016; Schwartz et al., 2021; Zvarivadza, 2018).

One of the central debates surrounding ASM revolves around its 
formalization, which involves integrating ASM into the formal economy, 
subjecting it to legal and regulatory frameworks, and providing miners 
with access to support services and markets (Hilson et al., 2022). Pro-
ponents argue that formalization can improve working conditions, 
enhance environmental stewardship, and increase government revenue 
(Jiménez et al., 2024). Additionally, ASM often serves as a coping 
strategy for poverty alleviation and livelihood diversification (Hilson 
and Maconachie, 2020). In rural areas, ASM and farming are inter-
twined, with ASM providing supplementary income during agricultural 
off-seasons and farming acting as a fallback during periods of low 
mineral prices or resource depletion (Bryceson and Jønsson, 2010).

Policymakers and donors face the challenge of balancing the eco-
nomic benefits of ASM with addressing its negative impacts. Effective 
policies should promote responsible ASM practices, provide alternative 
livelihoods, and tackle the root causes of poverty and marginalization 
(Hilson, 2024). Conflicts between large-scale mining (LSM) and ASM 
often emerge, as LSM operations encroach on ASM areas causing 
displacement and environmental degradation, while ASM activities can 
result in illegal mining within LSM concessions, leading to environ-
mental damage and security concerns. (Hilson et al., 2020; Kemp and 
Owen, 2019). Therefore, it is important to understand the spatial di-
mensions and geographical distribution of ASM activities. Analyzing 
spatial data can inform targeted interventions, identify overlaps with 
biodiversity hotspots, and support sustainable initiatives. It also aids in 
legalizing and supporting artisanal miners through targeted monetary 
interventions. Comprehensive spatial data also helps resolve conflicts 
between LSM and ASM by delineating designated areas, preventing 
encroachment, and identifying feasible coexistence zones. This infor-
mation supports sustainable and equitable resource-sharing strategies 
and policies, ensuring both sectors thrive without conflicts.

To date, a broad range of RS approaches have been applied to detect 
and monitor ASM in diverse local contexts. Artisanal and small-scale 
gold mining (ASGM), for instance, typically occurring near river 
streams, creates distinct surface footprints such as irregular lunar- 
shaped pits, tailings, and pit-lakes spanning areas of <5 ha but some-
times extending to over 100 ha due to feature merging. These features 
are usually detectable by medium-resolution (5–30 m pixels) airborne or 
satellite images, provided the pixel size is less than a quarter of the 
mining pit (Jensen, 2009). The global coverages and regular acquisitions 
(every 5–16 days) of the Landsat and Sentinels programs offered op-
portunity for researchers, such as Barenblitt et al. (2021) and DeWitt 

et al. (2022), to detect ASM areas as small as 5 ha, facilitating meth-
odological trials for ASM mapping.

The mapping of rudimentary mineshafts associated with lode de-
posits, such as gemstones, demands the precision of pricier high spatial- 
resolution imagery (<5 m pixels), due to their limited surface footprints 
(< 1 ha). While such imagery provides greater accuracy and detail, cost 
and data volume restrictions often confine its use to localized studies 
(Ahmed et al., 2021; Chirico and DeWitt, 2017). Unoccupied aerial 
systems (UAS) provide even finer resolution, but their limited coverage 
limits their optimal suitability to project-specific applications or tar-
geted sampling strategies. (Carreiras et al., 2012).

There is limited published work successfully mapping ASM beyond 
the local scales, e.g., for whole countries, continents, or globally. Studies 
such as Maus et al. (2022) and Tang and Werner (2023) have endeav-
oured to spatially capture the global extent of various mining activities, 
including both industrial mining and ASM. However, these datasets do 
not comprehensively represent ASM activities and thus hold limited 
utility in many regions.

Scaling-up ASM mapping would enrich our understanding of ASM's 
immediate and cumulative impacts (De Haan et al., 2020; Hilson, 2020; 
Hilson and Maconachie, 2020). In practice, this would require con-
verting a local-scale workflow to regional, national, and global scales 
consistently. However, while the RS literature and the case studies to 
date demonstrate that a range of data and techniques can be used to 
detect and monitor ASM, the applicability of those specific methods 
tested locally to other locations or their scalability to regional or global 
levels remains uncertain.

This paper reviews RS approaches employed for mapping ASM to 
date to provide the basis for then developing a regional (100 − 500 k 
km2) to continental (> 500 k km2) scale mapping and monitoring pro-
grams. We sought to identify areas where additional research could 
provide the most valuable insights by filling knowledge gaps, building 
and understanding the role of local factors in choosing appropriate RS 
approaches enabling the transferability of methods developed in one 
study to other contexts and identifying cost-effective methods for further 
application, and where RS could address current limitations of field- 
based approaches to monitoring ASM in some contexts. Specifically, 
we were motivated by three research questions:

(1) To what extent do current RS studies represent the geographical 
distribution and diversity of ASM activities globally?

(2) How do the unique characteristics of ASM operations and the 
specific local contexts influence the selection of RS approaches 
for mapping ASM?

(3) Based on an evaluation of RS approaches employed in ASM 
studies thus far, which methods exhibit the highest levels of ac-
curacy and cost-efficiency?

2. Methodology

2.1. Collating peer-reviewed research papers

We identified 150 papers using Google Scholar with the following 
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key phrases: “artisanal small-scale mining remote sensing”, “artisanal 
small-scale mapping”, and “small-scale mining identification and map-
ping”, as of October 2022. We identified an additional eight papers in 
Scopus and the Web of Science (WoS) using the following query string: 
“TI/AB = (‘artisanal’ AND ‘small-scale mining’ AND (‘remote sensing’ 
OR ‘satellite’ OR ‘earth observation’ OR ‘identification’ OR ‘monitoring’ 
OR ‘spatial analysis’))”.

Our search string focused on studies using RS as the primary tool for 
detecting and mapping ASM, as our review aims to synthesize literature 
specifically on remote sensing techniques. Broader terms like ‘identifi-
cation’ or ‘monitoring’ would have included studies not prioritizing 
remote sensing. We excluded papers using GIS modeling, spatial anal-
ysis, or other non-RS methods, as they do not meet our objective of 
evaluating remote sensing's effectiveness in ASM contexts.

The lead author screened titles, abstracts, and full papers, removing 
duplicates manually. This narrative review focuses on synthesizing 
literature specific to RS applications in ASM detection and mapping. 
Given that ASM is loosely defined in the academic literature, for the 
initial search, we accepted the definition provided by the authors and 
then followed a three-step process to collate papers for our final review. 
First, we examined the abstracts of all papers (n = 158) to assess their 
relevance to any ASM detection, mapping, or monitoring attempts using 
various RS approaches. Only those addressing ASM activities distinct 
from industrial large-scale mining (LSM) and applying RS as a main or 
auxiliary tool were deemed relevant. Second, we thoroughly read all 
pertinent papers (n = 85) to further select those that (1) employed an RS 
approach to identify and map ASM sites or proxy indicators of ASM, and 
(2) defined ASM and outlined a method for mapping ASM distinct from 
the identification of any LSM activity. Lastly, we applied snowball 
literature sampling on the identified papers (n = 55) to incorporate any 
additional relevant articles meeting the criteria, resulting in 57 papers 
which hereafter we refer to as ‘study’. This review may have biases: 
language bias from only English papers, selection bias from specific 
criteria, snowballing bias from key studies, and database bias excluding 
niche journals. We also excluded grey literature like technical reports, 
white papers, theses, and conference proceedings.

2.2. Data compilation and categorization

We compiled a database to summarize key variables related to the 

location and the scope and methodology of the studies. This includes 
ASM commodity, mining or extraction method, the average size of the 
mining site, features used for identification, sensors (type of RS imagery 
or data), and the recognition method (Table 1).

We documented the ‘commodities’ mined to identify the predomi-
nant resources extracted by ASM. We classified studies that reported the 
extraction of more than two commodities into two distinct categories: 
“Metalliferous” for studies reporting the mining of various metals and 
“Crystalline” for those associated with the mining of crystal resources 
(McKenna et al., 2020). Furthermore, we recorded the type of extraction 
method or “mining methods”. This included a broad spectrum of tech-
niques such as open-pit mining, dredging, sluicing, shaft mining, un-
derground mining, and a category termed “mixed method.” The mixed 
method category encompasses studies that report a combination of 
extraction techniques for different commodities within a single 
investigation.

Following the categorization by McKenna et al. (2020), we classified 
RS sensors used by reviewed studies into five groups. For studies 
employing optical satellite imagery, we classified the sensors as follows: 
“EO High” represents Earth observation with high spatial resolution (<5 
m); “EO Medium” denotes Earth observation with medium spatial res-
olution (5–30 m); and “EO Low” signifies Earth observation with low 
spatial resolution (>30 m). The remaining two sensor categories 
encompass “SAR” for satellite synthetic aperture radar and “UAS” for 
high-resolution imagery obtained via unoccupied aerial systems.

We classified the average size of ASM sites as either smaller or larger 
than 5 ha. This distinction was based on an estimation of the minimal 
mining site size that can easily be identified, with minimal errors, by 
optical satellite imagery with medium to low spatial resolution using a 
pixel-based classification technique (Smith et al., 2019). Furthermore, 
the “identification” of mining areas was categorized based on whether 
they were directly discerned from the surface footprint (e.g., mining pit, 
sluicing area, and tailings) or inferred from proxy indicators (e.g., 
nightlights and water siltation).

The “Recognition Method” encompasses both the identification of 
surface features (detection) and the categorization of these features 
(classification), which we classified into seven categories. “Pixel-based” 
methods assess the similarity of pixels for specific land cover types, 
while “Subpixel-based” techniques analyze the blend of land cover 
present within each pixel. In contrast, “Object-based” and 

Table 1 
Variables used to categorize the scope and methodology of each study in this review.

Variables

Commodity Mining method Identification feature RS imagery Recognition method

Metalliferous

– Nickel
– Tin
– Iron
– Gold
– Copper
– Coltan
– Manganese
– Bauxite

Crystalline

– Amethyst
– Diamond
– Cassiterite
– Monazite
– Tantalite
– Tourmaline
Crocidolite

Cobalt

Emerald

Limestone

Dredging

– Underwater excavation of placer deposit.
Sluicing

– Gold-bearing gravels are washed down by sprayed jets of 
water.

Shaft

– Ores and minerals were excavated using vertical shafts.
Underground

– Extraction of ores and minerals from underground deposit 
veins.

Open-pit

– Extract ores and minerals from an open pit after top-soil 
removal.

Mixed mining methods

Mining site

– Mining pit
– Mining sluicing area
– Tailing facilities
– Mining dredging area
Proxy indicator

– Nightlights
– Greenness and moisture 

index
– Water siltation
– Backscatter changes
– Surface soil displacement

EO Low (> 30 m) 
EO Medium (5–30 m) 
EO High (< 5 m) 
SAR (Synthetic Aperture

Radar)

UAS (Unoccupied Aerial

System)

Advanced classification

techniques

Digitization

Interferometry

Pixel-based

Subpixel-based

Segmentation-based

Object-based (GEOBIA)
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“Segmentation-based” approaches focus on detecting objects and seg-
ments rather than individual pixels. “Interferometry” is applied to SAR 
images. Studies that manually mapped and digitized ASM from RS im-
agery without utilizing the aforementioned methods were categorized as 
“Digitization.” The term “Advanced classification techniques” refers to 
detection and classification methods that employ more complex algo-
rithms, such as deep learning models (e.g., Convolutional Neural 
Networks).

2.3. Data analysis

To assess the global distribution of ASM mapping studies (Question 
1), we extracted the country of origin for each paper based on the re-
ported study location. We subsequently mapped the distribution of 
studies using QGIS (ver. 3.20.0) and the ASM-dependent population 
map derived from Dorner et al. (2012). We quantified the count of each 
categorical variable and compiled the reported accuracy results. The 
average size of ASM target studies was calculated from the average 
extent of mining sites reported in the papers to elucidate the impact of 
satellite image selection on the extent of detectable ASM. We used the 
“ggalluvial” package (Brunson and Read, 2020) to create alluvial charts, 
illustrating the proportions and interconnectedness of data within and 
between variables (Question 2).

Furthermore, we compiled the accuracy levels reported in the 
studies, sorted them into the “recognition method” categories and the RS 
sensors used, and then calculated minimum, maximum, and average 
values (Question 3). It is essential to note that we collected accuracy 
levels reported by authors from the collated studies, each employing 
different validation approaches, and then averaged these values within 
their respective ‘recognition method’ groups. However, data training 
and test distribution, specific environmental, local biophysical factors, 
particular ASM types, and other site-specific factors that might influence 

the accuracy of the methods were not considered (Lyons et al., 2018; 
Morales-Barquero et al., 2019).

3. Results and discussion

3.1. Geographical distribution and commodity focus of RS-based ASM 
mapping

Our analysis shows a significant research focus on RS-based ASM 
mapping in central-western African countries, specifically Congo and 
Ghana, with gold, cassiterite, and diamonds as the main mined com-
modities (e.g., Barenblitt et al. (2021), Kranz et al. (2017), and Snapir 
et al. (2017)). This observation is substantiated by the 15 and 19 pub-
lications generated in these countries on the subject, underscoring the 
growing interest in ASM monitoring within the region (Fig. 1). However, 
of the 72 countries with a large ASM-dependent population (Dorner 
et al., 2012), only 15 countries have been the subject of active, peer- 
reviewed RS-based studies aimed at monitoring ASM.

Consequently, the current RS efforts inadequately reflect the global 
geographical distribution of ASM activities, given the considerable 
research gap for countries with a large ASM-dependent population, such 
as the Central African Republic (CAR), Niger, Sierra Leone, and 
Zimbabwe (Fig. 2). The call to extend RS to these lesser-studied regions, 
rich in minerals such as nickel, copper, and diamond, is clear (Hilson 
et al., 2019; Jaillon and De Brier, 2019; Maconachie, 2009). Such 
diversification would not only aim in an effort to manage this sector for 
environmental and social benefits, but it would also offer a much more 
holistic global view of ASM. Enhanced datasets are instrumental in 
devising effective policies (McQuilken and Hilson, 2016).

Several factors, ranging from site accessibility and data availability 
to policy priorities, shape this research bias. Remote regions with ASM 
activities pose significant research challenges, due to infrastructure 

Fig. 1. Geographic distribution of the studies, percentage population that depends on ASM (World-Bank-Group, 2019), and the example of ASM surface footprint 
(Google Earth 2023 imageries). A. Small-scale gold mining in Amazon Forest Brazil; B. Crocidolite mining in Prieska town, South Africa; C. Small-scale gold mining in 
West-Kalimantan, Indonesia.
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deficits, security threats, and logistical hurdles, hampering field 
research and vital ground data acquisition (Wagner and Hunter, 2020). 
Furthermore, the availability of publicly accessible, open-access satellite 

imagery data also varies regionally, with certain areas having better 
coverage. For example, high cloud coverage and frequency in wet- 
tropical regions limit usable optical satellite imagery availability 

Fig. 2. A schematic representation depicts the relationship between selected countries' population dependency on ASM and the intensity of ASM RS studies, ranging 
from nonexistence to the highest recorded number of peer-reviewed studies. The axis represents a spectrum with non-quantitative units. The countries featured in this 
figure address both legal and illicit ASM concerns. Symbols denote regional categorization: ( ) represents African nations, (− ) corresponds to Asian nations, and (+) 
signifies American nations.

Fig. 3. Stacked bar charts of the publication numbers for each year, according to the mined commodity.
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compared to drier environments (Laborde et al., 2017).
Policy priorities and funding allocation also influence research focus 

in ASM mapping. Certain countries or regions may receive more atten-
tion due to political, economic, or environmental considerations 
(Hilson, 2002; Hilson and McQuilken, 2014). Furthermore, the dearth of 
knowledge regarding the complexity of ASM-related impacts, lack of 
clarity in the policy framework, and resource limitations contribute to 
the monitoring approaches deployed by the countries hosting ASM 
problems (Hentschel et al., 2002; Miserendino et al., 2013). These fac-
tors collectively contribute to the observed biases in RS-based ASM 
mapping, highlighting the need for a more comprehensive and inclusive 
approach to address the global distribution of ASM activities and their 
associated environmental impacts.

Published RS-based mapping studies to date focused on gold as the 
most extensively investigated commodity, followed by diamond, 
cassiterite, and a variety of metalliferous materials (Fig. 3: e.g., Ibrahim 
et al. (2020), Ngom et al. (2020), and Obodai et al. (2019)). However, a 
comprehensive global picture of ASM commodities, including coal and 
sand, remains scarce. This bias may arise from the global prevalence of 
ASGM, attributed to its simple extraction process and easy market access 
(Schwartz et al., 2021; Seccatore et al., 2014). Broadening RS research, 
especially in areas like China and India where coal and sand ASM are 
common (Deb et al., 2008; Shen and Gunson, 2006), is crucial. Such 
expansion would contribute to determining the suitable RS mapping 
strategies for these distinct environmental settings.

3.2. Context-dependent selection of RS data and recognition methods for 
ASM mapping

The alluvial chart (Fig. 4) illustrates the distribution and inter- 
relationships among variables and categories in RS studies of ASM. 
Each category, represented by a bar (nodes), represents the proportion 
of related publications. Our findings show a focus on open-pit ASM, 
being the most studied extraction method (27 studies). This type of ASM, 
typically clustered and easily identifiable, is mostly mapped using EO 
Medium and well-established pixel-based or sub-pixel-based methods (e. 

g., Kumi-Boateng and Stemn (2020) and Elmes et al. (2014)). These 
activities often occur near rivers, producing distinct surface footprints, 
such as interconnected irregular pits, tailings, and pit-lakes.

Contrary to clustered ASM, some mining sites are more dispersed, 
covering areas of <5 ha and utilizing less discernible techniques like 
panning and dredging. These methods may not be readily identifiable 
through lower-resolution imagery. Such types of ASM can be mapped 
using high-resolution imagery, employing object-based, segmentation- 
based, and digitization approaches (e.g., Aggrey et al. (2021), Bona et al. 
(2018), and Janse van Rensburg and Kemp (2022)).

We also found that studies were often conducted in regions with 
mixed ASM extraction methods, which encompass a range of extraction 
techniques for different commodities within a single investigation (e.g., 
open-pit mining, sluicing, and panning). These studies exhibit a similar 
inclination toward sensor type selection based on the average ASM sizes 
within the studied area (e.g., Isidro et al. (2017) and Nyamekye et al. 
(2021)), Sentinel-2 for clustered ASM sites with an extent of >10km2. 
They focus on identifying easily recognizable features such as lunar- 
shaped pits, pit-lakes, sluicing machines, or clusters of miner tents in 
alluvial areas.

Research on mapping underground ASM, such as cobalt tunnel mines 
in the DRC, is limited to 5 papers. Detecting underground mining fea-
tures, such as tunnel openings, excavated materials, semi-permanent 
buildings, and pathways associated with underground mining, re-
quires costly EO High imagery with a resolution of <1 m, such as 
Worldview-2 and UAS (DeWitt et al., 2022). More cost-effective alter-
natives such as open-access SAR data can be used for surface deforma-
tion and subsidence analysis cover (e.g., Ammirati et al. (2020) and 
Brown et al. (2020)), overcoming the EO Medium limitations (Moreira 
et al., 2013).

3.3. Accuracy and cost-effectiveness of RS approaches in ASM mapping

Evaluating the effectiveness of RS mapping methods revealed vary-
ing accuracy levels, influenced by the mining operation's context and 
scale. We do note that accuracy estimates for one study may not be 

Fig. 4. Alluvial diagram demonstrating the proportions within variables and the correlation between variables of ASM mapping efforts using RS technologies 
and methods.
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suitable for comparison with those of another – as the studies used 
widely varying types of error and accuracy assessment approaches, with 
large variations in critical factors such as the number and distribution of 
validation or reference data (Lyons et al., 2018; Morales-Barquero et al., 
2019). The manual digitization method, predominantly utilizing EO 
High, reported the highest average accuracy (97 %; Table 2) and 
appeared most effective for monitoring ASM sites smaller than 5 ha, 
informally regulated mining sites, and even underground mining, 
enabling detailed assessments and precise spatial records (e.g., Ahmed 
et al. (2021) and DeWitt et al. (2022)). Object-based and segmentation- 
based approaches, also mainly applied to EO High, achieved relatively 
high average accuracies of 87.6 % and 87.1 %, respectively. These 
methods were capable of mapping small ASM sites (<5 ha) albeit limited 
to site-specific or local-scale investigations (e.g., Schoepfer et al. (2010)
and Stoll et al. (2022)).

The pixel-based approach using EO medium was the most common 
and reliable method for congregated ASM sites (Fig. 5), with an average 
reported accuracy of 89.6 % (e.g., Hausermann et al. (2018)). To map in 
forested areas where there is mixed spectral information per pixel, the 
sub-pixel-based classification utilizing low- to medium-spatial resolu-
tion imagery can produce high accuracy (average of 93.3 % in Asner 
et al. (2013) and Elmes et al. (2014). More advanced classification 
techniques, such as deep learning algorithms, have achieved 95.8 % 
accuracy for mapping open-pit ASM (e.g., Camalan et al. (2022) and 
Kimijima et al. (2022)).

The recent use of interferometry from SAR imagery shows promise in 
mapping both open-pit and underground ASM through surface defor-
mation and subsidence analysis (Monserrat et al., 2014). However, 
interferometry is sensitive to vegetation coverage, temporal decorrela-
tion, and temporal phase aliasing, affecting the accuracy of this 
approach and restricting its applicability to specific environmental 
contexts such as sparsely vegetated areas and not forests (Manconi, 
2019; Rocca et al., 2000).

Taken together, the selection of an appropriate recognition method 
for ASM mapping depends on the specific characteristics of ASM activ-
ities (size, above or below ground), available data sources, context 
(forests versus sparse vegetation), and the spatial and temporal detail 
required. There is a diverse range of approaches with strengths and 
limitations, and decisions also depend on skills capacity and computa-
tional resources.

In the context of mapping ASM using RS, cost-effectiveness analysis 
illuminates the trade-offs between the detail of maps, spatial resolution, 
and financial requirements. Among the methods examined in this 

review, employing EO Medium imagery stands out as the most cost- 
effective option, striking a balance between cost and accuracy 
(Table 3). This is due to most EO medium images being freely accessible, 
and expenses may primarily arise from fieldwork or software 
procurement.

While EO High images provide greater detail and superior accuracy, 
they come at higher costs, making them more applicable for site-specific 
or local investigations. Similarly, UAS offers higher resolution than 
satellite imagery, yet is only optimal for site-specific studies (e.g., 
Chirico and DeWitt (2017)). High costs notwithstanding, detailed high- 
spatial-resolution data is crucial for handling individual, informally 
regulated, or conflict-associated ASM sites (Kranz et al., 2016; Schoepfer 
et al., 2010).Finally, SAR imagery offers a unique advantage in detecting 
changes in surface topography related to mining activities and remains 
relatively unaffected by cloud coverage (Moreira et al., 2013). However, 
the cost-effectiveness of acquiring commercially high-resolution SAR 
data should be considered, despite the current availability of cost-free, 
medium-resolution SAR.

3.4. Future research directions and RS advances needed to map ASM 
beyond the local scale

Scaling up ASM mapping requires rigorous methodologies, robust 
data resources, and advanced processing capabilities. Mapping ASM in 
lesser-explored regions offers a unique opportunity to assess various 
methodologies in diverse contexts. Integrating open-source, multi-type 
RS data with cloud-based platforms like Google Earth Engine (GEE) is 
crucial due to GEE's exemplary storage and computational capabilities. 
This approach provides access to global, consistently collected datasets. 
Enhancing these datasets requires building local capacity, particularly in 
collecting ground-validated ASM spatial data and interpreting proxy 
data as foundational or supplementary resources.

The effectiveness of ASM mapping beyond the local scale is con-
strained by the quality of satellite imagery. Common challenges with 
multispectral products include cloud cover and forest canopy obstruc-
tions (Isidro et al., 2017; Lobo et al., 2016). While SAR images are less 
affected by these issues, speckle issues can compromise classification 
accuracies (Maghsoudi et al., 2012). The integration of multispectral 
and SAR datasets, known as data fusion, can offset the limitations of 
each type individually. While multispectral-SAR data fusion offers the 
potential for enhanced ASM mapping accuracy, challenges related to 
data storage and processing persist (Moomen et al., 2022). Nevertheless, 
leveraging cloud-based geoprocessing platforms may mitigate these 
challenges (Mutanga and Kumar, 2019). This combined approach pro-
vides a promising, cost-effective solution for efficient and sustained ASM 
monitoring at a regional scale, especially vital for developing nations 
addressing ASM-related issues.

Effective ASM monitoring also requires ample training and test data, 
acknowledging that data collection is often labour-intensive and 
resource-demanding. When ground-checked data is scarce, alternative 
avenues to source reliable spatial data are needed. These options may 
include (1) manual interpretation of free EO High imagery like Google 
Earth, (2) utilization of global digitized mining datasets, such as Allan 
et al. (2023), Maus et al. (2022), or Tang and Werner (2023), or (3) 
reports from governmental and non-governmental organizations doc-
umenting confirmed ASM sites. Additionally, diving deeper into proxy 
data sources—from RS-analyzed social media feeds to citizen science 
insights and environmental markers like tainted vegetation, soil anom-
alies, and nightlight patterns—can shed light on the more informal ASM 
operations although with some limitations (e.g., Kyba et al. (2019); 
Kimijima et al. (2021); Levin et al. (2020); Kimijima et al. (2022); and 
(Allan et al., 2023)).

Furthermore, to enhance training and validation efforts, we propose 
establishing localized training programs in collaboration with local 
universities and research institutions. These programs will build ca-
pacity in remote sensing techniques specific to ASM detection and 

Table 2 
Summary of overall map accuracies taken from studies in the review that 
quantified overall map accuracies.

Recognition

method

Sensor (Avg[min-Max]: N)

EO Low EO

Medium

EO High SAR UAS

Advanced

Classification

Techniques

95.8

[92–99.6]:2

79

[76–82.1]:2

Digitization 93:1

94.6

[83.3–99]:8

Interferometry

85.1

[83–89.6]:4

Object-based 88:1

87.2

[84–93]:8 96.5:1

Pixel-based

92

[85.1–99]:2

89.6

[72.6–98]:2

95

[92–98]:2 90.9:1

Segmentation-

based

87

[85–89]:2

Subpixel-based 86:1

93.3

[87–99]:2
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monitoring adapted to local conditions and needs. In regions with sig-
nificant security and logistical challenges, such as Central African 
Repulic and Niger, remote training modules and virtual collaboration 
tools can provide ongoing support and capacity building, including 
online courses, webinars, and workshops. Partnering with local NGOs 
already working in these regions can support and facilitate on-the- 
ground implementation.

Transitioning from research to application, local governments 
should proactively incorporate RS approaches into ASM mapping and 
monitoring strategies rather than relying solely on external research. We 
encourage personnel from mining regulatory agencies or related public 
sectors to invest strategically in enhancing their RS expertise. Collabo-
ration with the scientific community and local universities to foster 
capacity-building and consultation efforts may also yield benefits 
(Moomen et al., 2019). International organizations and funding agencies 
should actively engage in discussions and dissemination of RS oppor-
tunities, especially for monitoring ASM activities in remote regions 
(Moomen et al., 2022). Strengthening local stakeholder capacity, 
including researchers, officials, community representatives, and miners, 
is crucial for a participatory approach in ASM monitoring. Organizing 
regional workshops and conferences in safer neighboring countries, like 
Ghana or Senegal, and creating regional hubs with existing centers of 
excellence in remote sensing and mining research will foster cross-sector 
partnerships. Formal collaborations with international research orga-
nizations and leveraging China's technological infrastructure through 
partnerships with institutions like the Chinese Academy of Sciences can 
pilot advanced remote sensing techniques for ASM detection and 
monitoring, ensuring integration of cutting-edge methodologies.

When extended beyond local scales, spatial data offers new tools to 
understand the socioeconomic and environmental complexities of ASM 
activities, providing insights into formalization, cultural shifts, liveli-
hoods, infrastructure, and community welfare (Ang et al., 2023; Hilson 
et al., 2022). Unlike traditional non-spatial or field-based methodolo-
gies, this approach visualizes connections between causative factors and 
mining consequences, as demonstrated by case studies on land-use 
conflicts and social acceptance (Malone et al., 2023; Rustad et al., 
2016). Integrating various socio-economic and environmental metrics, 

spatial data emphasizes collaboration and knowledge-sharing platforms 
like DELVE (https://delvedatabase.org/) for disseminating spatial data 
and best practices. These platforms facilitate information exchange 
among stakeholders, supporting effective policy development and 
interventions.

4. Conclusion

ASM mapping encounters challenges due to the site-specific nature of 
ASM issues, including the diverse nature of this activity, and limitations 
to map and monitor it with RS. However, opportunities for rapid studies 
persist in regions heavily dependent on ASM and where extensive 
extraction of ASM commodities occurs. Adapting RS techniques to the 
unique features of ASM, whether they are congregated or dispersed 
informal mining sites, using appropriate imagery and analysis methods, 
can significantly enhance detection and monitoring capabilities. 
Nevertheless, it is essential to emphasize that further research is still 
needed to address existing knowledge gaps in mapping underground 
ASM and to explore more cost-effective mapping approaches.

Another pivotal aspect in scaling up ASM mapping is the intricate 
balance between the level of detail, spatial resolution, and budgetary 
constraints. Cloud-based geoprocessing platforms with vast satellite 
archives emerge as promising tools for scalable ASM mapping. Addi-
tionally, the fusion of multispectral and imaging radar data can leverage 
the strengths of both RS data types while mitigating their individual 
limitations. Crucially, ensuring a thorough gathering of training and 
validation data is critical for dependable analysis. Collaborations with 
local communities and a deeper grasp of proxy data can bolster data 
acquisition, especially in data-scarce regions. By crafting bespoke 
mapping systems that engage local stakeholders and incorporate addi-
tional data such as social media insights, a more inclusive and 
partnership-driven ASM mapping approach emerges. Harnessing cloud 
platforms to amalgamate these elements fosters a cooperative frame-
work, simplifying RS processing available online and enabling regular 
updates—paving the way for a cooperative regional or even global ASM 
mapping and monitoring initiative.

Accurate mapping of ASM can reveal its true contribution to 

Fig. 5. Illustration of surface features in a congregated artisanal small-scale gold mining area in Kalimantan, Indonesia, depicted using multispectral Google and 
Sentinel-2 imagery (5–4-3 bands composite; 10 m pixel resolution), as well as Sentinel-1 SAR with VV (vertical-vertical) and VH (vertical-horizontal) polarizations 
(10 m pixel resolution).
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development and counter negative narratives about the sector. We 
emphasize the importance of standardized remote sensing methods 
facilitating better data sharing and aggregation among stakeholders for 
more effective collaboration and knowledge exchange. Global platforms 
for ASM data, which aim to address issues of inaccurate and incomplete 
data, can benefit significantly from these improved remote sensing 
methods.
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